連載 (講義)

Common Data Processing System Version 10 の使用法 — (5) 装置校正 —

吉原 一紘* オミクロンナノテクノロジージャパン(株) 〒140-0002 東京都品川区東品川 3-32-42 IS ビル *k.yoshihara@omicron.oxinst.com

(2014年4月18日受理)

7. 装置校正

COMPRO には分析装置のエネルギー軸,及び強度 軸の校正を ISO で決められた方法に従って実施する 手続きが組み込まれている.メニュー画面の [Calibration]をクリックすると校正すべき対象を選 択する画面が現れる.

🤞 Com	nmon Data Pr	ocessing Syste	em Vers	sion 1	1				
File	Database	Calibration	Simula	ation	Multivariate analysis		Appendix	Help	
		Energy	•		AES	•	Mediur	n resolution	1
		Intensit	y 🕨		XPS		High re	esolution	

校正する対象として,エネルギー軸か強度軸かを 選択する.

7.1. AES のエネルギー軸の校正

AES の場合は分光器の分解能に対応して[Medium resolution]と[High resolution]のいずれかを選択する.

7.1.1. [Medium resolution]

校正方法は ISO17973 で規格化されている. [Calibration] - [Energy] - [AES] - [Medium resolution] を選択すると, 次の画面が現れる.

データが[direct mode]か[differential mode]のいずれ で取得されたかを指定する.次に,校正に使用した 試料が Cu と Au あるいは Cu と Al のいずれの組み 合わせかを指定する.対象とする分光器によって試 料の選択が異なるので,ISO17973 を参照すること. さらにピーク位置を測定したときの基準が真空基準 かフェルミ基準かを指定する.

指定されたピークのエネルギー位置を測定して記 入すると、COMPRO は ISO で定義されたピーク位 置の基準値との差を記録して、校正結果を表示する. ピーク位置の決定方法は ISO17973 に決められてい る. COMPRO では取得したスペクトルデータを [open]ボタンをクリックして読み込むと,自動的に ISO17973 に従った方法でピーク位置を決定して記 録する.例として CuMVV ピーク位置決定を COMPRO上で行う方法を次図に示す.CuMVV はダ ブレットピークとして観測されるが,ISO17973 では, ピーク位置をダブレットピークの共通接線の中間点 としている.COMPRO ではその値が左側画面の測定 値の欄に記入される.なお,校正に使うスペクトル は原則としてエネルギー間隔はおおよそ 0.1eV 以下 とされているので,それ以外のスペクトルデータが 入力されると警告文が現れるが,無視して校正を続 けることは可能である.

要求された3種のピーク位置の入力が終了すると 校正結果と分光器の状態の判定結果が表示される. 校正結果は自動的にコンピューターに記録される.

7.1.2. [High resolution]

校正方法は ISO17974 で規格化されている. [Calibration] - [Energy] - [AES] - [High resolution]を選 択すると,下の画面が現れる.

alibration date		file	
year 2014 🚔 month 4	🖨 day 1 🚔	open	
samples 🗸	校正に用いた試料の指定	save	
Cu and Al, 5 - 10keV		print	
Cu and Au, 5keV Cu and Au, 10keV	校正結果の時間変化表示	• chart	
process) first time) regula	初めての校正か、二かによってボタンを	度目以降の材 選択する。	

校正に用いる試料は分光器によって異なるが、Cu と Al または Au を選択する. 校正を初めて行う時 ([first time]) と二度目以降([regular]) とではデー タの取得方法が異なるので、どちらかを選択する. 次に使用している分光器の相対分解能を指定する. また、どの程度までエネルギー値の誤差を許容する かはユーザーに任されている. COMPRO には推奨値 があらかじめ入力されているが、ユーザーは VScrollbar で数値を変更できる. 試料の指定, [first time]か[regular]かの選択が終了すると、次に進む. 校正を初めて行う時([first time])を選択した時には 次画面が現れる.

この場合は、CuMVV、CuLVV、AuMNNの三種類の ピーク位置をそれぞれ7回ずつ測定し、次画面の表 に記入する.ただし、[Medium resolution]の場合と同 様に、測定したスペクトルを[open]ボタンをクリッ クして呼び出すと、それぞれのピーク位置を ISO に 決められた方法により測定して、自動的に表に記入 する.すべてのピーク位置の記入が終了したら、表 の左上部にある[C]ボタンをクリックする.

calibration date year 2014 🚔 m	onth 🛓 🌲	day 1 🚔		file open
samples Cu and Al, 5 Cu and Au, 5 Cu and Au, 1 Cu and Au, 1	- 10keV keV 0keV	eference peak CuM2,3VV CuL3VV AuM5N6,7N6,7	62.37 918.69 2015.79	save print chart
process inst time () relative resolution tolerance lim) regular on, % 0.10 hit, eV 0.20	ISOのピ ・ 測定した	ーク基準位 - ピーク位	置を記入
data input form	calibration r CuM2,3VV その記入を	esults calibration CuL3VV 完成させてク!	report AuM5N6,71 リックする	N6,7 。
4 5 6 7 Emeas n		測定結果の標	長示	

ピークごとに測定値の平均値,および標準誤差が 計算されて,ISO で定義されたピーク位置との差を 基に校正結果が求められて,表示される.ISO に規 定される精度で校正結果が得られない場合には,エ ラーメッセージが出て校正結果は破棄される.エ ラーメッセージには校正として何が不十分かを記述 してあるので,それを基に再測定を行うことが求め られる.

校正結果が得られると, [calibration results]タブに 次図に示すように報告される. 詳細な校正結果を表 示させたいときには[calibration report]タブをクリッ クする. 校正結果は自動的にコンピューターに記録 される.

次回以降の校正には[regular]ボタンを選択する. [regular]の場合には2種類のピーク(例示の場合は CuMVV と AuMNN)位置を測定すれば良い.初回 ([first time])の時の校正精度によって,ピーク位置 を2回ずつ測定するか,あるいは1回で良いかが指 示される. [regular]測定の時期に関しては ISO17974 を参照してほしい.

校正結果の時間変化は[chart]ボタンをクリックす ると次画面のように表示され、二つのピーク位置の 標準値からの「ズレ」の時間による変化が示される. ピーク位置が設定した許容範囲(グラフには破線で 警告ラインも表示されている)を外れた場合には装 置の校正が必要となるが、詳細は ISO17974 を参照 すること.

7.2. XPS のエネルギー軸の校正

校正方法は ISO15472 で規格化されている. [Calibration] - [Energy] - [XPS]を選択すると,下の画 面が現れる.

Return Help		
calibration date year 2014 🖨 month .	4 🔷 day 1 🛶	file open
source Al Ka Mg Ka mono_Al Ka	≪── 線源の選択	save print chart
process first time regu relative resolution, %	ilar 0.10	、二度目以降の校正 ンを選択する。
tolerance limit, eV	0.20 VScrollBarで値で	を変更できる。

線源を選択し、校正を初めて行う時([first time]) と二度目以降([regular])とではデータの取得方法が 異なるので、どちらかを選択する. どの程度までエ ネルギー値の誤差を許容するかは COMPRO には推 奨値があらかじめ入力されているが、ユーザーは VScrollbar で数値を変更できる. 試料の指定, [first time]か[regular]の選択が終了すると次に進む. 校正 を初めて行う時([first time])には次の画面が現れる.

例示の場合は monochromatic Al 線源を使う場合で ある. Au4f7/2, Ag3d5/2, Cu2p3/2 の三種類のピーク位 置をそれぞれ 7 回ずつ測定し, 次画面の表に記入す る. ただし, AES の場合と同様に, 測定したスペク トルを[open]ボタンをクリックして呼び出すと, そ れぞれのピーク位置を ISO に決められた方法により 測定して, 自動的に表に記入される. すべてのピー ク位置の記入が終了したら, 表の左上部にある[C] ボタンをクリックする.

例として Ag3d5/2 ピーク位置決定を COMPRO 上 で行う方法を下図に示す. ISO15472 では, ピーク頂 点近傍のピーク幅の中点を延長してピーク位置を求 めることになっている. COMPRO ではその値が左側 画面の測定値の欄に記入される.

ピークごとに測定値の平均値,および標準誤差が 計算されて,ISO で定義されたピーク位置との差を 基に,校正結果が求められ表示される.ISO に規定 される精度で校正結果が得られない場合には,AES の場合と同様にエラーメッセージが出て校正結果は 破棄されるので,再測定を行うことが求められる.

校正結果が得られると, [calibration results]タブに 次画面に示すように報告される. 詳細な校正結果を 表示させたいときには[calibration report]タブをク リックする. 校正結果は自動的にコンピューターに 記録される.

次回以降の校正には[regular]ボタンを選択する. [regular]の場合には2種類のピーク位置(例示の場合 はAu4f7/2 と Cu2p3/2)を測定すれば良い.初回の時 の校正精度によって、ピーク位置を2回ずつ測定す るか、あるいは1回で良いかが指示される.[regular] 測定の時期に関しては ISO15472 を参照してほしい. 校正結果の時間変化は[chart]ボタンをクリックする と AES の場合と同様に表示される.

7.3. 強度軸の直線性の校正

ISO21270には強度軸の直線性の校正方法として2 種類の方法が規格化されている.一つは線源の強度 を変化させてピーク強度を測定して,校正する方法 で,もう一つは高い線源強度と低い線源強度で測定 した二つのスペクトルの比から校正する方法である.

7.3.1. 線源強度変化法

この方法は通常は AES の強度軸校正に適用され る. [Calibration] - [Intensity] - [Linearity] - [Varying source flux]を選択すると,次画面が現れる. AES の 場合には線源強度を30段階変化させて,CuLVVピー ク強度を測定して表に記入して[C]ボタンをクリッ クすれば校正結果が得られる.

COMPRO では線源強度を変化させて取得した CuLVV (multi block 形式で保存)のスペクトルがあ れば自動的にピーク強度を測定して表に記入する.

ピーク強度の線源強度に対する線形性がどの程度 まで保証されるかを決定することが校正の目的であ るので、線源強度とピーク強度の比が線源強度に対 してどのように変化するかを示すことが必要となる. データを入力して[C]ボタンをクリックすると COMPRO は次画面のような結果を表示する.

直線性からのズレを 2.5%まで許容するならば, 1.22 x 10⁶cps までのピーク強度は直線性を有するこ とがわかる. さらに不感時間や直線性の補正式など のデータも次図のように同時に表示される.

7.3.2. スペクトル強度比法

この方法は通常は XPS の強度軸校正に適用され る. [Calibration] - [Intensity] - [Linearity] - [Spectra ratio]を選択すると, 次の画面が現れる.

Journal of Surface Analysis Vol.21 No.1 (2014) pp.18-24 吉原一紘 Common Data Processing System Version 10 の使用法一(5)装置校正—

線源の強度を変えて Cu のスペクトル (wide) を 2本取得し, 2本のスペクトルの全てのエネルギー 点ごとのスペクトル強度を計測し, その強度比を求 め,表に記入する.線源の強度は2本のスペクトル の最高強度値がおおよそ1(low):4(high)になるように 選択する.手作業で2本のスペクトルの強度を表に 記入して[C]ボタンをクリックすれば校正結果が表 示される.

COMPROは線源強度を変えて取得した Cu のスペ クトルデータ (multi block) があれば,表に記入す ることなしに,自動的にエネルギーごとのスペクト ル強度比を求めて校正結果を表示することが出来る. 次画面に例を示す.

横軸に高線源強度で取得したスペクトル強度,縦 軸に高線源強度と低線源強度で取得したスペクトル の強度比をプロットした図が表示される.

結果は前項で述べた線源強度変化法と全く同様に 求められ,線形性を保証する最高カウント数を求め ることが出来る.

7.4. 強度軸の再現性及び定常性

ISO24236 には AES, ISO24237 には XPS の強度の 再現性と定常性に関する校正法が規格化されている. AES の場合は CuMVV と CuLVV のピーク強度比, XPS の場合は Cu2p3/2 と Cu3p のピーク強度比を測 定し,再現精度 (repeatability) と恒常性 (constancy) を判定する. [Calibration] - [Intensity] - [Repeatability and constancy]を選択すると,次の画面が現れる.

初めて校正する場合には、手法を選択した後 [repeatability]ボタンを選択すると次画面が現れる. 例として XPS(mono Al)を選択した場合を示す.再現 性の許容限界はユーザーが設定できる.なお, COMPRO には推奨値が設定されている.

指定されたピーク強度を7回測定して表に記入す ることが必要であるが、Cu ピークを7回計測した データファイルがあれば、COMPRO は[open] ボタ ンをクリックすることによりそのファイルを読み込 んで、次画面のように指定の Cu ピーク強度を自動 計測し、表に記入する.

[C]ボタンをクリックすると校正結果が次画面の ように表示される.校正結果は自動的にコンピュー ターに保存される.一度[repeatability]を校正してお けば,次回以降は[constancy]を選択すれば良い. [constancy]の場合は指定されたピーク強度をそれぞ れ2回ずつ測定すれば良い. [constancy]の時間変化 は[chart]ボタンをクリックすれば表示される.

data input form calibrat	ion results		
repeatability ユーザ・	~許容値 🚽	強度測定の評	再現性の精度
tolerance limit, %	4		測定値
	Cu2p3/2	Cu3p	ratio
average value	29785.97	14660.63	0.49
rel. std. deviation, %	0.52	0.77	1.16
uncertainty, %	1.36	1.99	3.02

8. 参考文献

装置校正に関する ISO 規格は次の通りである.

- ISO 17973 Medium-resolution Auger electron spectrometers - Calibration of energy scales for elemental analysis
- ISO 17974 High-resolution Auger electron spectrometers - Calibration of energy scales for elemental analysis and chemical state analysis
- 3. ISO 15472 X-ray photoelectron spectrometers Calibration of energy scales
- 4. ISO 21270 X-ray photoelectron and Auger electron spectrometers Linearity of intensity scale
- 5. ISO 24236 Auger electron spectroscopy Repeatability and constancy of intensity scale
- 6. ISO 24237 X-ray photoelectron spectroscopy Repeatability and constancy of intensity scale

今回は ISO 規格の内容の説明は省略し, COMPRO を用いた操作方法に限って説明した. COMPRO では, それぞれの画面で[Help]-[Tip]を選択すれば,対応す る ISO 規格の簡単な説明が表示されるので,それを 参照すればおおよそのことは理解できるが,詳細は ISO 規格を参照してほしい.また表面分析研究会で は ISO 規格に関する講習会を開催しているので,参 加されることをお勧めする.